A Hybrid Two-Phase Mixture Model of Detonation Diffraction with Compliant Confinement
نویسندگان
چکیده
A multi-material two-phase hybrid model of heterogeneous explosives, with a reaction rate that is proportional to the gas-phase pressure excess above an ignition threshold, is examined computationally. The explosive is confined within a compliant inert, and the focus is on the behavior of an established detonation as it rounds a 90◦ corner and undergoes diffraction. The numerical approach, a variant of Godunov’s method, is designed to capture interfaces between materials that can undergo phase change, and extends previous work of the authors on rigidlyconfined two-phase detonations. The dependence of the post-diffraction conduct on the strength of the confinement is explored by holding the reaction-rate prefactor and the ignition threshold fixed, and considering confiners of two different strengths. The aim is to determine whether a detonation that turns the corner successfully when rigidly confined can experience failure when the confinement is compliant.
منابع مشابه
A Study of Detonation Propagation and Diffraction with Compliant Confinement
Previous computational studies of diffracting detonations with the ignition-and-growth (IG) model demonstrated that contrary to experimental observations, the computed solution did not exhibit dead zones. For a rigidly confined explosive it was found that while diffraction past a sharp corner did lead to a temporary separation of the lead shock from the reaction zone, the detonation re-establis...
متن کاملEffect of Cyclotrimethylenetrinitramine on the WetSynthesis of Ultra-nanocrystalline Diamond
The Ultra-nanocrystalline diamond (UNCD) was synthesized by the detonation of a high explosive mixture in water confinement. The presence of a diamond phase was revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). X-ray line broadening (XRLB) was used to evaluate the peak profiles of diamond nanoparticles and their corresponding average crystallite sizes. The micro st...
متن کاملA Study of Detonation Diffraction and Failure for a Model of Compressible Two-Phase Reactive Flow
A two-phase model of heterogeneous explosives, with a reaction rate that is proportional to the gasphase pressure excess above an ignition threshold, is examined computationally. The numerical approach, a variant of Godunov’s method designed to accommodate nonconservative terms in the hyperbolic model, extends previous work of the authors to two-dimensional configurations. The focus is on the b...
متن کاملروش بررسی امکان وقوع تراک در جریانهای با سرعت بالا
In this paper, an evaluation method is presented for assessment of detonation occurrence hazard on the basis of some experimental data. This method is applied on a supersonic jet at the exit of a propulsion system including hydrogen. Because of mixing hydrogen with the surrounding air, a combustible mixture is occurred which detonation occurrence hazard is assessed in this mixture. Types of det...
متن کاملNumerical Study of Blast Initiation of Detonation Using a Two Step Chemical Kinetics Model
The effect of chemical reactions on the blast initiation of detonation in gaseous media has been investigated in this paper. Analytical method is based on the numerical solution of onedimensional reactive Euler equations. So far, analyses on the blast initiation of detonation have modeled the combustion process as a one-step chemical reaction, which follows the Arrhenius rate law. Previous stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012